Algorithmica (1995) 14: 355-366

Algorithmica

© 1995 Springer-Verlag New York Inc.

Finding All Periods and Initial Palindromes of
a String in Parallel’

D. Breslauer? and Z. Galil®

Abstract. An optimal O(log log n)-time CRCW-PRAM algorithm for computing all period lengths
of a string is presented. Previous parallel algorithms compute the period only if it is shorter than half
of the length of the string. The algorithm can be used to find all initial palindromes of a string in the
same time and processor bounds. Both algorithms are the fastest possible over a general alphabet. We
derive a lower bound for finding initial palindromes by modifying a known lower bound for finding
the period length of a string [9]. When p processors are available the bounds become @('n/p7 + log
logy , pu12p).

Key Words. Parallel algorithms, Lower bounds, Comparison model, Strings, Periods, Palindromes.

1. Introduction. A string &[0..n] has a period &[0..p — 1] of length p if
FLi] = LLi + plfori=0--n— p. The period of #[0..n] is defined as its shortest
period. Periodicity properties of strings have been studied extensively [18] and
are practically used in almost all efficient sequential and parallel string-matching
algorithms.

A palindrome is a string that reads the same forward and backward. Formally,
a string £[0..k] is a palindrome if &[i]= [k —i] for i =0---k. A string
£[0..n] is said to have an initial palindrome of length k if the prefix #[0..k — 1]
is a palindrome. Palindromes have been studied for centuries as word puzzles [3]
and more recently have some uses in complexity theory [14].

A parallel algorithm is said to be optimal if its time-processor product, that is,
the total number of operations performed, is equal to that of the fastest sequential
algorithm for the same problem. Note that simple parallel algorithms can compute
all periods and all initial palindromes of a string in constant time using an
n2-processor CRCW-PRAM. These algorithms are not optimal since both prob-
lems have linear-time sequential algorithms [17], [20]. Our goal in this paper is
to design fast optimal parallel algorithms.

The period length of a string is computed in linear time in a step of Knuth et
al’s [17] sequential string-matching algorithm and in optimal O(log log n) time

! This work was partially supported by NSF Grant CCR-90-14605. D. Breslauer was partially
supported by an IBM Graduate Fellowship while studying at Columbia University and by a European
Research Consortium for Informatics and Mathematics postdoctoral fellowship.

2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.

3 Computer Science Department, Columbia University, New York, NY 10027, USA, and Tel-Aviv
University, Ramat Aviv 69 978, Israel.

Received May 5, 1992; revised December 4, 1993. Communicated by F. T. Leighton.




156 D. Breslauer and Z. Galil

on a CRCW-PRAM in a step of Breslauer and Galil's [8] parallel string-matching
algorithm. A recent lower bound that was discovered by Breslauer and Galil [9]
for finding the period length of a string shows that the O(log log n) bound is the
best possible over a general alphabet, where the only access the algorithm has to
the input string is by pairwise symbol comparisons. However, Breslauer and Galil’s
[8] parallel string-matching algorithm as well as an O(log n)-time optimal string-
matching algorithm that was discovered by Vishkin [22] compute the period
length p only if p <[n/27; knowing the fact that p >[n/27 is sufficient to
obtain efficient string-matching algorithms. An earlier string-matching algorithm
that was designed by Galil [13] can find all periods and all initial palindromes of
a string in O(log n) time on an n-processor CRCW-PRAM. This algorithm can be
made optimal by reducing the number of processors to n/log n, if the input symbols
are drawn from a constant-size alphabet. Other parallel string-matching algo-
rithms that are based on the Karp-Miller-Rosenberg [15] sequential string-
matching algorithm [10], [16] can also be adapted for these problems but require
O(log n) time, n processors ([16] requires only n/logn processors), superlinear
space, and a restricted alphabet.

In this paper we show that given an optimal parallel string-matching algorithm,
all periods, including those which are longer than half of the length of the input
string, can be computed in the same processor and time bounds of the string-
matching algorithm. In particular, Breslauer and Galil’s [8] algorithm can be
used to obtain an optimal O(log log n)-time CRCW-PRAM algorithm that com-
putes the period length of a string exactly, even if it is long. This reduction
establishes that the task of computing the period length of a string in parallel is
not harder than string matching.

To find the initial palindromes, we use a known reduction from the sequential
setting [12] to show how the algorithm that finds all periods of a string can find
all initial palindromes in the same time and processor bounds. We also prove
a matching lower bound for this problem under the assumption of a general
alphabet.

The paper is organized as follows: In Section 2 we overview the algorithms for
finding all periods and initial palindromes. Section 3 contains the details of these
algorithms and in Section 4 we prove the lower bound for finding the initial
palindromes.

2. Finding the Periods. We describe an algorithm that computes all period
lengths of a given string &[0..n]. The output of the algorithm is a Boolean array
P[1..n] such that P[i] = true iff i is a period length of &[0..n].

One of the major issues in the design of PRAM algorithms is the assignment
of processors to their tasks. We ignore this issue in this paper and use a general
theorem that states that the assignment can be done.

THEOREM 2.1 [4].  Any synchronous parallel algorithm of time t that consists of a

total of x elementary operations can be implemented on p processors in [x/p]+t
time.




D. Breslauer andz o

aralle] String-matg,
reslauer ang Galif
og log 1) boung is i
S the algorithy has
", Breslauer and Galg,
lz)-time Optima] gt
compute the pera
/27 is suﬁicim
8-matching algorify
Initial palindromes

[his algorithm cappy -
7, if the input sympey,
tring-matching g
5] sequential string.
problems but Tequie
CESSOTS), Superliney;

-matching algorithy, "

e length of the inpat
ounds of the string-
] algorithm cap e
algorithm that cop.
ong. This reductiop
string in paralldl

from the sequentid
of a string can find

ids. We also prow

ption of a generdl

/ the algorithms for
the details of thee
finding the initial

mputes all period
is a Boolean array

n].
is the assignment
and use a general

 that consists of &
ssors in [x/p]+1t

Finding All Periods and Initial Palindromes of a String in Parallel 357

This theorem can be used for example to slow down a constant-time p-processor
algorithm to work in time t using p/t processors. We describe an O(log log n)-time
algorithm using n/log log n processors. Some of the steps in our algorithm are
described as constant-time steps using n processors.

We prove the following theorem:

THEOREM 2.2. An algorithm exists that computes P[1..n] and takes O(log log n)
time using n/log log n processors. If p processors are available the algorithm takes
OTn/pl + loglogry pm 2p) time.

CorOLLARY 2.3.  The exact period length of a string #[0..n] can be computed in
the same time and processor bounds.

Proor. The period length of #[0..n] is the smallest i such that P[] is true. We
use a technique of Fich et al. [11] to compute the minimum of n integers in the
range 1..n in constant time using an n-processor CRCW-PRAM. (By Theorem
2.1 this step can be slowed down to work in optimal O(log log n) time or in O{n/p)
time On p processors.) O

CoroLLARY 24. Al initial palindromes of a string S[0..n] can be computed in
the same time and processor bounds.

PrOOF. Suppose we want to compute all initial palindromes of a string w that
does not contain the symbol $. We present wSw® (where w® is the string w reversed)
as input to the algorithm that computes all periods of a string. Each period of
this string corresponds to an initial palindrome of w. Two copies of the string
wSw® are aligned with each other shifted by some offset and the overlapping parts
are identical if and only if the overlapping part is an initial palindrome of w. This
reduction was used by Fischer and Paterson [12]. O

ExampLE The string abaab has an initial palindrome aba. This initial palindrome
corresponds to the period abaab$ha of the string abaab$baaba.

ProOF OF THEOREM 2.2. The algorithm proceeds in independent stages which
are all computed simultaneously and are described in the next section. In stage
number 7, 0 <5 <m, the algorithm computes only P{n—1[ +1..n -1 ,,];
where the sequence {/,} is a decreasing sequence defined as [, = n, I, , =3I, ]and
m is the smallest integer for which [, = 0. Note that each stage is assigned to
compute a disjoint part of the output array P and the entire array is covered.

By breaking the output array into segments that are handled separately, we are
able to use periodicity properties of strings [18] in each segment. These properties
let us represent and manipulate the output of some string-matching problems
efficiently. These ideas were successfully applied in several other parallel algorithms
for string problems [1], [2], [7]. [5]. [6].




358 D. Breslauer and Z. Galjl

We denote by T, the time it takes to compute stage number 7 using P,
processors. The number of operations at stage n are denoted by O, = TP,
We show later how to implement stage number # in T, = O(loglogl,) time
and O, = I, operations using Breslaver and Galil’s [8] parallel string-matching
algorithm.

Since all stages of our algorithm are executed in parallel the total number
of operations performed in all stages is Y, 0, <Y, (3)'n = O(n) and the time is
max T, = O(loglog n). By Theorem 2.1 the algorithm can be implemented using
n/log log n processors in O(log log n) time.

It remains to show that if the number of available processors is p the algorithm
takes O(n/p7 + loglog i, ,»2p) time. If p < nfloglogn, then by Theorem 2.1
the algorithm can be slowed down to work in O(n/p) time. If n/loglogn <p <n,
then the bound above is still O(log log n). If p > n, then stage number # can be
implemented in T, = O(log logy . ,,(2p/n)l,) time using (p/n)l, processors. The
total number of processors used for all stages is Z,, (p/ml, < Z,, (3)"n = O(p) and
the time is max T, = O(log logr, ., ,/12D)- O

3. A Single Stage. In this section we describe a single stage 7, 0 < n < m, that
computes P[n —I, + 1..n—1,,] in optimal O(log log /,) time. Note that since a
period of length p implies that £[0..n — p] = &[p..n], there must be occurrences
of #[0..1,, ,] starting at each position p which is a period length of ¥[0..n]
and is in the range computed by this stage.

Stage # starts with a call to a string-matching algorithm to find all occurrences
of #[0..1, 4, ]in ¥[n— 1, +1..n]. Let q;,i = 1---r, denote the indices of all these
occurrences (all indices are in the string #[0..n], thus n — [, < g; < n—1,,,).

If no occurrences were found, the string &#[0..n] has no period length in the
range computed by this stage and all entries of P[n — [, + 1..n — [, ;] can be sef
to false. Otherwise, we continue with another call to a string-matching algorithmr
to find all occurrences of #[0..1,,,]in #[0..1, — 1]. Let p;, i = 1--- k, denote the
indices of all these occurrences (note that p, = 0).

If there was only one occurrence of #[0..l,,,] in &[n— l,+1..n], thi
occurrence can be verified to be a period length in 0(l,) operations. However, i
there are r > 1 occurrences, O(rl,) operations may be needed to verify all of them
Luckily the sequences {p;} and {g;} have a “nice” structure as we show in thi
following lemmas. This structure enables us to proceed efficiently to test which o
the g;’s is actually a period length of &[0..n].

LEMMA 3.1 [19]. If a string of length m has two periods of length p and q an
p + g <m, then it has also a period of length ged(p, q).

LemMa 3.2, If a string A[1..1] has period length p and occurs only at positior

Py < py < pi of a string B[1..[3[7], then the p;’s form an arithmetic progressio
with difference p.




s and Initial Palindromes of a String in Parallel 359

me k > 2. We prove that p = p;,; — p;for i = 1---k — 1. The string
riod of length p and ¢ = p;,, — p;. Since p < ¢ < [1/27, by Lemma
s a period of length gcd(p,q). However, p is the length of the
.80 p = ged(p, g) and p must divide g. The string B[p;..p; ., + [ — 1]
igth p. If ¢ > p, then there must be another occurrence of A4 at
» of B; a contradiction. |

The sequences {p;} and {q;} form an arithmetic progression with
there P is the period length of 0.1, ,].

sequences p; and g; are indices of occurrences of a string of length
ngs of length [,. Recall that I, =| 3/, | By Lemma 3.2 the ps and
writhmetic progression with a difference 2, the period length of

O

:es {p;} and {g;} can be represented using three integers (each): the
equence, the difference, and the length of each sequence. This
can be easily obtained from the output of the string-matching
onstant time and [, processors.

g;’s can be ruled out of being period lengths of &#[0. . n] immediately,
the following lemma.

Ifk < r,then g, is not a period lengthof #[0..n]for1 <i<r—k.

me that g; is a period length of & and 1 <i <r — k. In this case
'[0..n — g;]. The string &[q;..n] has r — i + 1 > k occurrences of
hich are g;, ..., q,. However, #[0..n — g;] is of the same length and
urrences of £[0..1,,,]; a contradiction. O

: be two reasons why g, + £ is not included in the {g;} sequence:

L ANT#EF0.. N —q,—P],and A =min(n, q, + P+, ,,) we call
ch.

10 mismatch, then the only reason that g, + & is not in the {q;}
that g, + 2 + l,+, > n. We call this case an overflow.

A Mismatch). If ¥[g,+P.. N]# FL[0.. N4 —q,—P], then
't most one period whose length is in the range computed by this stage.
ible period length may exist if k <r, and it is g, ;-

Lemma 34 all ¢q;, 1<i<r—k+ 1, are not period lengths.
1 period length and i>r — k + 1, then ¥[g;..n] = ¥[0..n - g].
-i+2<kand pj=(—-V2 Llg, +Z.. N ]1=F[P-is2...V —
ssumption of a mismatch #[g, + Z.. 4] # [0...4" — g, — Z].
N —gq] #SLL0..4 — g, —2P]. However L[p,_iss.-Pris2+
1,+:] and also A" — ¢, — #? < l,,,; a contradiction. O




360 D. Breslauer and Z. Galil

LeMMA 3.6 (An Overflow). If ¥[gq, + ?..n] =&[0..n —q, — Z], then:

(@) If k > r, then q,,..., q, are period lengths of $[0..n].
(b) Ifk <r,thenq,_+,,...,q, are period lengths of S’[0..n]. In this case q,
may also be a period length of S[0..n].

PrOOF. Assume ¥[q, + #..n] = £[0..n — g, — 2]. It is enough to show that
g; is a period length of & for max(r —k + 2, 1) <i<r.
By the definition of the {g;} and {p;} sequences

‘Sp[o"pr—i+1+ln+1]=y[qi"qr+ln+1]’ (1)

since both substrings are covered by r —i + 1 occurrences of £[0..1,,,]. Also,
since r —i+ 2 <k,

y[pr—i+2"pr—i+2 + lr]+1] = y[o"lq-l-l]' (2)

However, n — g, — # <l,., and #[q, + Z..n] = ¥[0..n — q,—Z]. By taking
prefixes of (2)

Lla,+P.n]=FProis2--Pris2 + 1 —q, — 2] 3)
By combining equalities (1) and (3), we get that £[0..n — q;] = ¥[q;..n]. O

The computation in stage 7 can be summarized as follows:

1. Compute the {g;} and {p;} sequences.
2. If k < r, check if g,_, . is a period length of #[0..n].
3. g, + 2. /] =Z[0..4 — g, — Z], then:
(a) If k > r, then g4, ..., g, are all period lengths of &[0..n].
(b) If k <r, then q,_; 45, ..., g, are all period lengths of &[0..n].

LEMMA 3.7. Stage number n correctly computes P[n — I, + 1..n — I . ]. It takes
O(log log l,) time and uses O(l,) operations.

Proor. Correctness of the algorithm follows from Lemmas 3.4-3.6. The two calls
to a string-matching algorithm to compute the {q;} and {p;} sequences take
O(loglogl,) time and O(l,) operations if we use Breslauer and Galil's [8]
string-matching algorithm. The sequences {g;} and {p,} can be represented by three
integers which can be computed from the output of the string-matching algorithm
(which is assumed to be a Boolean vector representing all occurrences) in constant

time and O(l,) operations. Steps 2 and 3 can also be done in constant time and
O(l,) operations. O



eslauer and 7, Gaiil

P, then:

this case Qrotsy

gh to show thyt

Y

’[0 . lq + 1]' AISQ,

—#]. By taking

Slgi--n] O

.n].

- l,,.;. 1]. It Iakl?s

.6. The two calls ‘

sequences take
nd Galil's [8]

ented by three
hing algorithm
ces) in constant
\stant time and
; 0

Finding All Periods and Initial Palindromes of a String in Parallel 361

Lemma 3.8, Stage number n can be implemented in Oflog 10gry , . A2p/m)l,) time
on (p'ml, processors if p > n.

proor. The calls to Breslauer and Galil's [8], [9] string-matching algorithm
take O(log logr; ., .{2p/n)l,) time if p > n and (p/n)l, processors are available for
stage number 7. The rest of the work can be done in constant time since the
number of processors is larger than [,. O

4. A Lower Bound. Given a string .#{0..n], we say that it has an initial
palindrome of length k if [i] = [k —i — 1]fori =0,..., k — 1. We modify the
lower bound of [9] to a lower bound for determining whether a string #[0..n]
has an initial palindrome whose length is larger than n/2. This lower bound holds
even for deciding if the string #[0..n] has any initial palindrome other than the
trivial initial palindrome of length one. Since there are some modifications in the
details of the lower bound we repeat most steps of the proof. The missing proofs
can be found in the original paper.

The model for which the lower bound is proved is similar to Valiant’s parallel
comparison tree model [21]. We assume the only access the algorithm has to the
input string is by comparisons that check whether two symbols are equal or not.
The algorithm is allowed p comparisons in each round, after which it can proceed
to the next round or terminate with the answer. We give a lower bound on the
minimum number of rounds necessary in the worst case. This lower bound holds
even if an algorithm is allowed to perform order comparisons that can result in
less than, equal, or greater than answers [9]. In the case of a general alphabet a
CRCW-PRAM must use comparisons to solve any string problem and our lower
bound holds.

We show a strategy for an adversary to answer & log log n rounds of comparisons
after which it still has the choice of fixing the input string & in two ways: in one,
the resulting string has an initial palindrome whose length is larger than n/2,
and in the other it does not have any such initial palindrome. This implies that
any algorithm that claims to compute all initial palindromes in fewer rounds can
be fooled.

We say that an integer k is a possible period length of #[0..n] if we can fix
4 consistently with answers to comparisons made in earlier rounds in such a way
that k is a period length of &. For such k to be a period length we need each
residue class modulo k to be fixed to the same symbol, thus if [ = j mod k, then
S = #11

We say that an integer k is a possible initial palindrome of &[0..n] if we can
fix & consistently with answers to comparisons made in earlier rounds in such a
way that & has an initial palindrome of length k. For such k to be an initial
palindrome length we need that if | = k — j — 1, then &[] = &[Jj].

For an integer k to be a period length and an initial palindrome length we need
both conditions to hold. That is, if [=jmodk or if I= —j— 1 modk, then
LI = £[j]. We call such k a palindromic-period length.




36 D. Breslauer and Z. Galil

Let | = gk + r such that 0 <r < k. That is, r = I mod k. Define ¢,(I) as:

r if r< l:k:l,
o) = 2

k—r—1 otherwise.

Using this notation, k is a palindromic-period length of & if, for any two indices
I and j that satisfy ¢,() = ¢,(), S =[] If [=jmodk, we say that [
and j are in the same residue class modulo k. If I=—j— 1modk, we say
that I and j are in symmetric residue classes modulo k. The function ¢, maps
integers which are in the same residue class or in symmetric residue classes modulo
k to the same value. We say that such integers are in the same extended residue class
modulo k (this is an equivalence relation on the integers).

At the beginning of round i the adversary will maintain an integer k; which is
a possible palindromic-period length. The adversary answers the comparisons of
round i in such a way that some k;, , is a possible palindromic-period length and
few symbols of & are fixed. Let K; = n'"*"""". The adversary will maintain the
following invariants which hold at the beginning of round number i:

1. k; satisfies 3K; < k; < K.
2. If &#[I] was fixed, then, for every j such that ¢, () = ¢ (j), L[j] was fixed to
the same symbol. In other words, the entire extended residue class of [ modulo
k; was fixed to the same symbol.
3. If a comparison was answered as equal, then both symbols compared were
fixed to the same value.
4. If a comparison between positions [ and j was answered as unequal, then:
(@) ! and j are in different extended residue classes modulo k;. That is
¢, () # ¢,(J)-
(b) If the symbols S[I] and &[] were fixed, then they were fixed to different
values.
5. The number of fixed symbols f; satisfies f; < K.

Note that invariants 3 and 4 imply consistency of the answers given so far.
Invariants 2-4 imply that k; is a possible palindromic-length: if we fix all symbols
in each unfixed extended residue class modulo k; to a new value, using the same
value within an extended residue class but different values for unrelated residue
classes, we obtain a string which is consistent with the comparisons answered so
far and has a palindromic-period length k;. Such a string will have initial
palindromes of all lengths which are integral multiples of k;.

We start at round number one with k; = K, = 1. It is easy to see that the
invariants hold initially. We show how to answer the comparisons of round i and
how to choose k;, , so that the invariants still hold. All multiples of k; in the range
3K+, " K;4, are candidates for the new k;, . A comparison &[I] = &[] must
be answered as equal if [ and j are in the same extended residue class modulo
ki, y; thatis, if ¢, () = ¢;+,(j). We say that k;, , forces this comparison.



Finding All Periods and Initial Palindromes of a String in Parallel 363

LemMa 4.1, If p, g, r = /2n/k; and are relatively prime, then a comparison
[s] = L[] is forced by at most two of pk;, gk;, and rk;.

ProoF. A comparison can be forced by some pk; because the indices of the
compared symbols are in the same residue class or because they are in symmetric
residue classes.

Assume s and t are in the same residue classes modulo pk; and gk;, thus
s = t mod pk; and s =tmod gk;. Then s =tmod pgk. However, pgk; > n and
0 < s, t < n which implies that s = t; a contradiction.

If s and t are in symmetric residue classes modulo pk; and gk;, then
s=—t—1modpk; and s= —t—1modgk;. Then s+ ¢+ 1 =0mod pgk,.
However, pgk; > 2n and 0 < s, t < n; a contradiction.

The only remaining case is when s and ¢ are in the same residue class modulo
one of pk; or gk; and in symmetric residue classes modulo the other. In this case
we go back to the third candidate rk; and consider the pairs rk; and pk;, and rk;
and gk;. One of these pairs is in one of the categories above; a contradiction to
the existence of the third candidate. O

LemmA 4.2.  The number of candidates for k, ., which are prime multiples of k; and
satisfy 3K+, € kjvy < K;,, is greater than K, /(4K log n). Each such candidate
satisfies the condition of Lemma 4.1.

LemMA 4.3. A candidate for k;, , in the range 3K, ., - K, , that forces at most
(8nK; log n)/K; ., , comparisons.

Proor. By Lemma 4.2 there are at least K;,,/(4K; log n) such candidates which
are prime multiples of k; and satisfy the condition of Lemma 4.1. By Lemma 4.1
each of the n comparisons is forced by at most two of them. So the total number
of comparisons forced by all these candidates is at most 2n (at most two
comparisons forced by each candidate). Thus, there is a candidate that forces at
most (8nK;log n)/K,, ; comparisons. O

LEMMA 4.4. For large enough n and i < Lloglogn, 1 + n**"'64logn < n**™.

LeEMMA 4.5. Assume the invariants hold at the beginning of round i and the
adversary chooses k; ., to be a candidate which forces at most (8nK;log n)/K;,
comparison. Then the adversary can answer the comparisons in round i so that the
invariants also hold at the beginning of round i + 1.

Proor. By Lemma 4.3 such k;,, exists. For each comparison that is forced by
k;+ 1, and is of the form &[] = &[] where ®x.,.() = ¢y, ()), the adversary fixes
the symbols in the residue class modulo k; , and its symmetric residue class (the
extended residue class) to the same new value (a different value for different
extended residue classes). The adversary answers comparisons between fixed
symbols based on the values they are fixed to. All other comparisons involve




364 D. Breslauer and Z. Galil

symbols that are not in the same extended residue class modulo k;,, (and at least
one unfixed symbol) and are always answered as unequal.

The extended residue classes form a partition of the set of integers between 0
and n. This partition is refined when we move from extended residue classes
modulo k; to extended residue classes modulo k;, ;. Since k; ., ; is a multiple of k;,
the extended residue classes modulo k; split. This means that if two indices are in
different extended residue classes modulo &;, then they are also in different extended
residue classes modulo k; ., ; and if two indices are in the same extended residue
class modulo k; , ;, then they are also in the same extended residue class modulo k;.

We show that the invariants still hold.

. The candidate we chose for k;,; was in the required range.

. Extended residue classes which were fixed in earlier rounds split into several
extended residue classes, all are fixed. Any symbols that is fixed at this round
causes its entire extended residue class modulo k;., to be fixed to the same
value.

3. Equal answers of earlier rounds are not affected since the symbols involved
were fixed to the same value by the invariants held before. Equal answers of
this round are either between symbols which were fixed before this round to
the same value or are within the same extended residue class modulo k;,, and
the entire extended residue class if fixed to the same value.

4. (a) Unequal answers of earlier rounds are between different extended residue
classes modulo k; , ;, since extended residue classes modulo k; split. Unequal
answers of this round are between different extended residue classes, because
comparisons within the same extended residue class modulo k; . , are always
answered as equal.

(b) Unequal answers to comparisons that involve symbols which were fixed in
earlier rounds are answered according to the symbol values and, therefore,
these symbols must have been fixed to different values. Unequal answers
to comparisons that involve symbols which are fixed at the end of this
round and at least one fixed at this round are consistent since a new value
is used for the symbols in each extended residue classes that is fixed.

5. We prove inductively that f;,, < K;,,. We fix at most (16nK;logn)/K;,,

residue classes modulo k;. ;. There are k; ., such classes and each class has at

most [n/k;,,] < 2n/k;,, elements. By Lemma 4.4 and simple algebra the
number of fixed elements satisfies

BN -

2n 16nK;logn
ki+l Ki+1

(&)
<K|l+|—— 64logn]
Ky

< n*~* 71 4+ n**7'64 log n)

< T =Ky O

Sisr<fit



L Gal

! leagt

een |

lasses
ofk,
are iy
:nded
sidu
ok

veral |
ound |

same

lved
s of
dto
and

idue

qual

Ause

vays |

din
ore,
vers
this
lue

ji’r {
sat
the

Finding All Periods and Initial Palindromes of a String in Parallel 365

THEOREM 4.6. Any comparison-based parallel algorithm for finding the initial
palindromes of a string S[0..n], using n comparisons in each round, requires
1log log n rounds.

Proor. Fix an algorithm which finds the initial palindromes of % and let the
adversary described above answer the comparisons. After i = 4 log log n rounds

fiots kipg S pt7HUYE = ppiosn < ) The adversary can still fix & to have
a palindromic-period length k;, , by fixing the symbols in each remaining residue
class modulo k;, ; and its symmetric residue class to the same value, and different
values for each class. In this case any integral multiple of k;, , is also an initial
palindrome. Alternatively, the adversary can fix all unfixed symbols to different
values. Note that this choice is consistent with all the comparisons answered so
far by invariants 3 and 4, and the string does not have any initial palindrome of
length larger than n/2. In fact, in the latter case, the string will not have any initial
palindrome except the trivial initial palindrome of length one. Consequently, any
algorithm which terminates in less than } log log n rounds can be fooled.

This proof also gives a lower bound for computing the period length of a
string. O

THEOREM 4.7. Any comparison-based parallel algorithm for finding the initial
palindromes of a string [0 ..n] using p comparisons in each round requires at least
Q(n/p| + loglogr 1 pym 2p) rounds.

5. Discussion. The algorithm described in this paper uses a string-matching
procedure as a “black-box” that has a specific input—-output functionality, without
going into its implementation details. By using Breslauer and Galil’s [8]
string-matching algorithm, we obtained an optimal O(log log n)-time algorithm
which is the best possible in the case of a general alphabet, as implied by a lower
bound of Breslauer and Galil [9]. It is unknown if faster optimal string-matching
algorithms exist in the case of a fixed alphabet. If such an algorithm exists it
would immediately imply a faster algorithm for finding the periods. Note that
a fast CRCW-PRAM implementation requires the computation of certain func-
tions, such as the log function and powers of 3 within the time and processor
bounds.

Acknowledgments. We thank the referee for reading this paper carefully and
providing many suggestions. We also thank Alberto Apostolico, Roberto Grossi,
Jorg Keller, Kunsoo Park, and Laura Toniolo for comments on early versions of
this paper.




. 5l

366 D. Breslauer and Z. Galil

References

—

[

1 A. Apostolico and D. Breslauer. An optimal O(log log n) time parallel algorithm for detecting

all squares in a string. STAM J. Comput., to appear.

[2] A. Apostolico, D. Breslauer, and Z. Galil. Optimal parallel algorithms for periods, palindromes
and squares. Proc. 19th Internat. Collog. on Automata, Languages, and Programming. Lecture
Notes in Computer Science, Vol. 623. Springer-Verlag, Berlin, 1992, pages 296-307.

[3] H.W. Bergerson. Palindromes and Anagrams. Dover. New York, 1973.

[4] R.P.Brent. Evaluation of general arithmetic expressions. J. Assoc. Comput. Mach., 21:201-206,
1974.

[5] D. Breslauer. Efficient String Algorithmics. Ph.D. thesis, Department of Computer Science,
Columbia University, New York, 1992.

[6] D.Breslauer. Fast parallel string prefix-matching. Theoret. Comput. Sci., 137(2):269-278, 1995.

[7] D. Breslauer. Testing string superprimitivity in parallel. Inform. Process. Lett., 49:5 235-241,
1994.

[8] D. Breslauer and Z. Galil. An optimal O(log log n) time parallel string matching algorithm.
SIAM J. Comput., 19(6):1051-1058, 1990.

[9] D. Breslauer and Z. Galil. A lower bound for parallel string matching. SIAM J. Comput.,
21(5):856-862. 1992.

[10] M. Crochemore and W. Rytter. Usefulness of the Karp-Miller-Rosenberg algorithm in parallel
computations on strings and arrays. Theoret. Comput. Sci., 88:59-82, 1991.

[11] F.E.Fich, R. L. Radge, and A. Wigderson. Relations between concurrent-write models of parallel
computation. Proc. 3rd ACM Symp. on Principles of Distributed Computing, 1984, pages
179-189.

[12] M. ]. Fischer and M. S. Paterson. Sring matching and other produces. In R. M. Karp, editor,
Complexity of Computation. American Mathematical Society, Providence, RI, 1974, pages
113-125.

[13] G. Galil. Optimal parallel algorithms for string matching. Inform. and Control. 67:144-157, 1985,

[14] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Reading, MA, 1979.

[15] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. Proc. 4th ACM Symp. on Theory of Computing, 1972, pages 125-136.

[16] Z. Kedem, G. M. Landau, and K. Palem. Optimal parallel suffix-prefix matching algorithm
and applications. Proc. Ist ACM Symp. on Parallel Algorithms and Architectures, 1989, pages
388-398.

[17] D.E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM J. Comput.,
6:322-350, 1977.

[18] M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, MA, 1983.

[191 R. C. Lyndon and M. P. Schutzenberger. The equation a™ = b"c? in a free group. Michigan
Math. J., 9:289-298, 1962.

[20] G. Manacher. A new linear-time “On-line” algorithm for finding the smallest initial palindrome
of a string. J. Assoc. Comput. Mach., 22:346-351, 1975.

[21] L. G. Valiant. Parallelism in comparison models. SIAM J. Comput., 4:348-355, 1975.

[22] U. Vishkin. Optimal parallel pattern matching in strings. Inform. and Control, 67:91-113, 1985.




